Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Trop Med Infect Dis ; 7(1)2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1636330

ABSTRACT

Quantitative real-time PCR and genomic sequencing have become mainstays for performing molecular detection of biological threat agents in the field. There are notional assessments of the benefits, disadvantages, and challenges that each of these technologies offers according to findings in the literature. However, direct comparison between these two technologies in the context of field-forward operations is lacking. Most market surveys, whether published in print form or provided online, are directed to product manufacturers who can address their respective specifications and operations. One method for comparing these technologies is surveying end-users who are best suited for discussing operational capabilities, as they have hands-on experience with state-of-the-art molecular detection platforms and protocols. These end-users include operators in military defense and first response, as well as various research scientists in the public sector such as government and service laboratories, private sector, and civil society such as academia and nonprofit organizations performing method development and executing these protocols in the field. Our objective was to initiate a survey specific to end-users and their feedback. We developed a questionnaire that asked respondents to (1) determine what technologies they currently use, (2) identify the settings where the technologies are used, whether lab-based or field-forward, and (3) rate the technologies according to a set list of criteria. Of particular interest are assessments of sensitivity, specificity, reproducibility, scalability, portability, and discovery power. This article summarizes the findings from the end-user perspective, highlighting technical and operational challenges.

2.
Front Bioeng Biotechnol ; 9: 720315, 2021.
Article in English | MEDLINE | ID: covidwho-1394749

ABSTRACT

High containment biological laboratories (HCBL) are required for work on Risk Group 3 and 4 agents across the spectrum of basic, applied, and translational research. These laboratories include biosafety level (BSL)-3, BSL-4, animal BSL (ABSL)-3, BSL-3-Ag (agriculture livestock), and ABSL-4 laboratories. While SARS-CoV-2 is classified as a Risk Group 3 biological agent, routine diagnostic can be handled at BSL-2. Scenarios involving virus culture, potential exposure to aerosols, divergent high transmissible variants, and zoonosis from laboratory animals require higher BSL-3 measures. Establishing HCBLs especially those at BSL-4 is costly and needs continual investments of resources and funding to sustain labor, equipment, infrastructure, certifications, and operational needs. There are now over 50 BSL-4 laboratories and numerous BSL-3 laboratories worldwide. Besides technical and funding challenges, there are biosecurity and dual-use risks, and local community issues to contend with in order to sustain operations. Here, we describe case histories for distinct HCBLs: representative national centers for diagnostic and reference, nonprofit organizations. Case histories describe capabilities and assess activities during COVID-19 and include capacities, gaps, successes, and summary of lessons learned for future practice.

3.
Am J Clin Pathol ; 155(2): 286-295, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-900382

ABSTRACT

OBJECTIVES: To evaluate the analytical and clinical performance of the Truvian Easy Check coronavirus disease 2019 (COVID-19) IgM/IgG anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody test.Serologic assays have become increasingly available for surveillance through the Food and Drug Administration emergency use authorization in the ongoing COVID-19 global pandemic. However, widespread application of serologic assays has been curbed by reports of faulty or inaccurate tests. Therefore, rapid COVID-19 antibody tests need to be thoroughly validated prior to their implementation. METHODS: The Easy Check device was analytically evaluated and its performance was compared with the Roche Elecsys anti-SARS-CoV-2 antibody assay. The test was further characterized for cross-reactivity using sera obtained from patients infected by other viruses. Clinical performance was analyzed with polymerase chain reaction-confirmed samples and a 2015 prepandemic reference sample set. RESULTS: The Easy Check device showed excellent analytical performance and compares well with the Roche Elecsys antibody assay, with an overall concordance of 98.6%. Clinical performance showed a sensitivity of 96.6%, a specificity of 98.2%, and an overall accuracy of 98.1%. CONCLUSIONS: The Easy Check device is a simple, reliable, and rapid test for detection of SARS-CoV-2 seropositivity, and its performance compares favorably against the automated Roche Elecsys antibody assay.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/instrumentation , COVID-19/diagnosis , SARS-CoV-2/immunology , Cross Reactions , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Sensitivity and Specificity
4.
Am J Clin Pathol ; 154(5): 620-626, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-722234

ABSTRACT

OBJECTIVES: To evaluate the analytical and clinical performance of the automated Elecsys anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody (Elecsys Ab) assay on the Roche cobas e602 analyzer. With the ongoing global coronavirus disease 2019 (COVID-19) pandemic, widespread and routine serologic testing of SARS-CoV-2 remains a pressing need. To better understand its epidemiologic spread and to support policies aimed at curtailing further infections, reliable serologic testing is crucial for providing insight into the dynamics of the spread of COVID-19 on a population level. METHODS: The presence of anti-SARS-CoV-2 antibodies in polymerase chain reaction-positive, confirmed COVID-19 patient samples was determined using the Elecsys Ab assay on the Roche cobas e602 analyzer. The precision and cross-reactivity of the Elecsys Ab assay were characterized and its performance was compared against the EuroImmun IgA/IgG antibody (EuroImmun Ab) assay. Calculated sensitivity, specificity, and positive and negative predictive values were assessed. RESULTS: The Elecsys Ab assay demonstrated good precision, had no cross-reactivity with other viral samples, and showed 100% concordance with the EuroImmun Ab assay. Excellent clinical performance with respect to sensitivity, specificity, and positive and negative predictive values was observed. CONCLUSIONS: The Elecsys Ab assay is a precise and highly reliable automated platform for clinical detection of seropositivity in SARS-CoV-2 infection.


Subject(s)
Automation, Laboratory , Betacoronavirus/pathogenicity , Serologic Tests , Automation, Laboratory/methods , Clinical Laboratory Techniques , Female , Humans , Immunoglobulin G/analysis , Male , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/instrumentation , Serologic Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL